
KEY PUBLICATIONS
2025
Zhu, J., Sha, J., Batra, H., Jain, S., Wu, X., Hendrix, E.K., Kilgore, P.B., Sun, K., Plante, K.S., Plante, J.A., Walker, J., Tao, P., Chopra, A.K. and Rao, V.B. (2025), A Modular
Bacteriophage T4 Nanoparticle Platform Enables Rapid Design of Dual COVID-19-Flu Mucosal Vaccines. Small Sci., 5: 2400580. (Frontispiece Page).
2024
Zhu, J., Tao, P., Chopra, A. K., and Rao, V. B. (2024). Bacteriophage T4 as a Protein-Based, Adjuvant- and Needle-Free, Mucosal Pandemic Vaccine Design Platform. Ann. Rev. Virol. 11(1):395-420.
Wang, S., Kuang, S., Song, H. et al., Rao, V. B., and Tao, P. (2024). The role of TIR domain-containing proteins in bacterial defense against phages. Nature Communications, 15, 7384.
Jain, S., Uritskiy, G., Mahalingam, M., Batra, H., Chand, S., Trinh, H. V., Beck, C., Shin, W.-H., Alsalmi, W., Kijak, G., Eller, L. A., Kim, J., Kihara, D., Tovanabutra, S., Ferrari, G., Robb, M. L., Rao, M., and Rao, V. B. (2024). A remarkable genetic shift in a transmitted/founder virus broadens antibody responses against HIV-1. eLife, 13.
2023
Prévost, J., Chen, Y., Zhou, F. et al. (2023). Structure-function analyses reveal key molecular determinants of HIV-1 CRF01_AE resistance to the entry inhibitor temsavir. Nature Communications, 14, 6710.
Fokine, A., Islam, M.Z., Fang, Q., Chen, Z., Sun, L. and Rao, V.B. (2023). Structure and Function of Hoc—A Novel Environment Sensing Device Encoded by T4 and Other Bacteriophages. Viruses, 15, 1517. (Cover Page)
Zhu, J., Batra, H., Ananthaswamy, N., Mahalingam, M., Tao, P., Wu, X., Guo, W., Fokine, A. and Rao, V.B. (2023). Design of Bacteriophage T4-based Artificial Viral Vectors for Human Genome Remodeling. Nature Communications 14:2928.
Rao, V. B., Fokine, A, Fang, Q, Shao, Q. (2023). Bacteriophage T4 Head: Structure, Assembly, and Genome Packaging. Viruses, 14;15(2).
2022
Fang, Q., Tang, Wei-Chun, Fokine, A., Mahalingam, M., Shao, Q., Rossmann, M. G., and Rao, V. B. (2022). Structures of a large prolate virus capsid in unexpanded and expanded states generate insights into the icosahedral virus assembly. PNAS, 119 (40): e2203272119.
Rao, V. B., and Zhu J. (2022). Bacteriophage T4 as a nanovehicle for delivery of genes and therapeutics into human cells. Curr. Opin. Virol. 55:101255. (Cover Page)
Zhu, J., Jain, S., Sha, J., Batra, H., Ananthaswamy, N., Kilgore, P. B., Hendrix, E. K., Hosakote, Y. M., Wu, X., Olano, J. P., Kayode, A., Galindo, C. L., Banga, S., Drelich, A., Tat, V., Tseng, C.-Te., K., Chopra A. K., Rao, V. B. (2022). A bacteriophage-Based, highly efficacious, needle- and adjuvant-free, mucosal COVID-19 vaccine. mBio, 13.
2021
Li Dai, Digvijay Singh, Suoang Lu, Vishal Kottadiel, Reza Vafabakhsh, Marthandan Mahalingam, Yann R. Chemla, Taekjip Ha, Venigalla B. Rao (2021). A viral genome packaging ring-ATPase is a flexibly coordinated pentamer. Nature Communications, 12:6548.
Zhu, Neeti Ananthaswamy, Swati Jain, Himanshu Batra, Wei-Chun Tang, Douglass A. Lewry, Michael L. Richards, Sunil A. David, Paul B. Kilgore, Jian Sha, Aleksandra Drelich, Chien-Te K. Tseng, Ashok K. Chopra, Venigalla B. Rao (2021). A Universal Bacteriophage T4 Nanoparticle Platform to Design Multiplex SARS-CoV-2 Vaccine Candidates by CRISPR Engineering. Science Advances, 7(37): eabh1547.
Rao, V. B., Fokine, A. and Fang, Q. (2021). The Remarkable Viral Portal Vertex: a plausible model for mechanism. Curr. Opin. Virol. 52:65-73.
Son BK, Patterson-West J, Arroyo-Mendoza J, Ramachandran R, Iben JR, Zhu J, Venigalla B. Rao, Dimitriadis EK, Hinton DM, (2021). A phage-encoded Nucleoid Associated Protein condenses both host and phage DNA and depresses H-NS silencing. Nucleic Acids Research, 49(16):9229-9245.
Xiaorong Wu, Jingen Zhu, Pan Tao, Venigalla B. Rao (2021). Bacteriophage T4 Escapes CRISPR Attack by Mini-homology Recombination and Repair. mBio, 12.
2020
Liu Y, Dai L, Dong J, Chen C, Zhu J, Rao VB, Tao P. (2020). Covalent Modifications of the Bacteriophage Genome Confer a Degree of Resistance to Bacterial CRISPR Systems. J. Virology, 9;94(23).
Mo Y, Keller N, delToro D, Ananthaswamy N, Harvey SC, Rao VB, Smith DE. (2020). Function of a viral genome packaging motor from bacteriophage T4 is insensitive to DNA sequence. Nucleic Acids Res. 48(20):11602-11614.
Fang, Q., Tang, W. C., Tao, P., Mahalingam, M., Fokine, A., Rossmann, M. G., Rao, V. B. (2020). Structural morphing in a symmetry-mismatched viral vertex. Nature Communications, 6;11(1):1713.
2019
Islam, M. Z., Fokine, A., Mahalingam, M., Zhang, Z., Garcia-Doval, C., van Raaij, M. J., Rossmann, M. G., Rao, V. B. (2019). Molecular anatomy of the receptor binding module of a bacteriophage long tail fiber. PLoS Pathogens, Dec 19;15(12).
Zhu, J., Tao, P., Mahalingam, M., Sha, J., Kilgore, P., Chopra, A. K. and Rao, V. (2019). A prokaryotic eukaryotic hybrid viral vector for delivery of large cargos of genes and proteins into human cells. Science Advances, 5(8):eaax0064.
Ananthaswamy, N., Fang, Q., AlSalmi,W., Jain, S., Chen, Z., Klose, T., Sun, Y., Liu, Y., Mahalingam, M., Chand, S., Tovanabutra, S., Robb, M., Rossmann, M.and Rao, V. B. (2019). A sequestered fusion peptide in the structure of an HIV-1 transmitted founder envelope trimer. Nature Communications, 10(1):873.
2018
Ordyan, M., Alam, I., Mahalingam, M., Rao, V. B. and Smith, D. E. (2018). Nucleotide-dependent DNA gripping and an end-clamp mechanism regulate the bacteriophage T4 viral packaging motor. Nature Communications, 9(1):5434.
Tao, P., Mahalingam, M., Zhu, J., Moayeri, M., Sha, J., Lawrence, W. S., Leppla, S. H., Chopra, A. K. and Rao, V. B. (2018). A bacteriophage T4 nanoparticle based dual vaccine against anthrax and plague. mBio, 9(5):e01926-18.
This paper was highlighted in NIH Research Matters, October 30, 2018 and Newsweek, October 26, 2018.Tao, P., Zhu, J., Mahalingam, M., Batra, H. and Rao, V. B. (2018). Bacteriophage T4 nanoparticles for vaccine delivery against infectious diseases. Adv. Drug Delivery Rev. 18: 30164-79.
Tao, P., Wu, X. and Rao, V.B. (2018). Unexpected evolutionary benefit to phages imparted by bacterial CRISPR-Cas9. Science Advances, 4(2):eaar4134.
This paper was highlighted in the February 16, 2018 issue of Science.
2017
Lin, S., Alam, T.I., Kottadiel, V., VanGessel, C.J., Tang, W-C., Chemla, Y.R., and Rao, V.B. (2017). Altering the speed of a DNA packaging motor from bacteriophage T4. Nucleic Acids Research. 45(19):11437-11448.
Chen, Z., Sun, L., Zhang, Z., Fokine, A., Padilla-Sanchez, V., Hanein, D., Jiang, W., Rossmann, M.G., and Rao, V.B. (2017). Cryo-EM structure of the bacteriophage T4 isometric head at 3.3-Å resolution and its relevance to the assembly of icosahedral viruses. PNAS, 114(39):E8184-E8193.
Tao, P., Wu, X., Tang, W.C., Zhu, J., and Rao, V.B. (2017). Engineering of Bacteriophage T4 Genome Using CRISPR-Cas9. ACS Synth Biol. 6(10):1952-1961.
Chand, S., Messina, E.L., AlSalmi, W., Ananthaswamy, N., Gao, G., Uritskiy, G., Padilla-Sanchez, V., Mahalingam, M., Peachman, K.K., Robb, M.L., Rao, M., and Rao, V.B. (2017). Glycosylation and oligomeric state of envelope protein might influence HIV-1 virion capture by α4β7 integrin. Virology, 508:199-212.
Kim, J., Jobe, O., Peachman, K.K., Michael, N.L., Robb, M.L., Rao, M., and Rao, V.B. (2017). Quantitative analyses reveal distinct sensitivities of the capture of HIV-1 primary viruses and pseudoviruses to broadly neutralizing antibodies. Virology 508:188-198. (This paper was highlighted in the Virology Highlights Blog, here.)
Tao, P., Mahalingam, M., Zhu, J., Moayeri, M., Kirtley, M., Fitts, E., Andersson, J., Lawrence, W., Leppla, S., Chopra, A., and Rao, V.B. (2017). A Bivalent Anthrax-Plague Vaccine That Can Protect Against Two Tier-1 Bioterror Pathogens, Bacillus anthracis and Yersinia pestis. Front. Immunol. 8: 687.
2016
Gao, S., Zhang, L., and Rao, V.B. (2016). Exclusion of small terminase mediated DNA threading models for genome packaging in bacteriophage T4. Nucleic Acids Res. 44(9):4425-39.
2015
Rao, V.B., and Feiss, M. (2015). Mechanisms of DNA Packaging in Large Double Stranded DNA Viruses. Ann. Rev. Virology, 2(1):351-378.
AlSalmi, W., Mahalingam, M., Ananthaswamy, N., Hamlin, C., Flores, D., Gao, G., and Rao, V.B. (2015). New Approach to Produce HIV-1 Envelope Trimers: both cleavage and proper glycosylation are essential to generate authentic trimers. J. Biol. Chem. 290:19780-95.
Sun, L., Zhang, X., Gao, S., Rao, P.A., Padilla-Sanchez, V., Chen, Z., Sun, S., Xiang, Y., Subramaniam, S., Rao, V.B., and Rossmann, M.G. (2015). Cryo-EM structure of the bacteriophage T4 portal protein assembly at near-atomic resolution. Nature Communications, 6:7548.
2014
Vafabakhsh R, Kondabagil K, Earnest T, Lee KS, Zhang Z, Dai L, Dahmen KA, Rao VB, Ha T. (2014). Single-molecule packaging initiation in real time by a viral DNA packaging machine from bacteriophage T4. PNAS, 111:15096-101.
Miglioria, A.D., Keller, N., Alam, T.I., Mahalingam, M., Rao, V.B., Arya, G., and Smith, D.E. (2014). Evidence for an electrostatic mechanism of force generation by the bacteriophage T4 DNA packaging motor. Nature Communications, 5:4173, 1-9.
2013
Padilla-Sanchez, V., Gao, S., Kim, H.R., Kihara, D., Sun, L., Rossmann, M.G., and Rao, V.B. (2013). Structure-function analysis of the DNA translocating portal of the bacteriophage T4 packaging machine. J. Mol. Biol. 426:1019-1038.
Tao, P., Mahalingam, M., Kirtley, M., van Lier, C.J., Sha, J., Yeager, L.A., Chopra, A.K., and Rao, V.B. (2013). Mutated and bacteriophage T4 nanoparticle arrayed F1-V immunogens from Yersinia pestis as next generation plague vaccines. PLOS Pathogens, 9(7):e1003495.
Tao, P., Mahalingam, M., Marasa, B., Chopra, A., and Rao, V.B. (2013). In vitro and in vivo delivery of genes and proteins using the bacteriophage T4 DNA packaging machine. PNAS, 110:5846-5851.
2012
Kottadiel, V.I., Rao, V.B., and Chemla, Y.R. (2012). The dynamic pause-unpackaging state, an off-translocation recovery state of a DNA packaging motor from bacteriophage T4. PNAS, 109:20000-20005.
Black, L.W., and Rao, V.B. (2012). Structure, Assembly, and DNA packaging of bacteriophage T4 head. Adv. Virus Res. 82:119-153. (Cover Page)
Sun, S., Gao, S., Kondabagil, K., Xiang, Y., Rossmann, M.G., and Rao, V.B. (2012). Structure and function of the small terminase component of the DNA packaging machine in T4-like bacteriophages. PNAS, 109(3):817-22.
2011
Ghosh-Kumar, M., Alam, T.I., Draper, B., Stack, J., and Rao, V.B. (2011). Regulation by Interdomain Communication of a Headful Packaging Nuclease from Bacteriophage T4. Nucleic Acids Res. 39:2742-2755.
Zhang, Z., Kottadiel, V., Vafabakhsh, R., Li, Dai, Chemla, Y.R., Ha, T.J., and Rao, V.B. (2011). A promiscuous DNA packaging machine from bacteriophage T4. PLOS Biology, 9(2):e10005929.
(This article was a “Research Highlight” in Nature Reviews Microbiology, 2011 Vol.9, Issue 4, here.)
2010
Sun, S., Rao, V.B., and Rossmann, M. (2010). Genome packaging in viruses. Curr.Opin. Struct. Biol. 20 (1):114-120.
Li, Q., Fokine, A., O’Donnell, E., Rao, V.B., and Rossmann, M.R. (2010). The Structure of the Small Outer Capsid Protein, Soc: A Clamp for Stabilizing Capsids of T4-like Phages. J. Mol. Biol. 395:728-41.
2009
Rao, V.B. (2009). A virus DNA gate: zipping and unzipping the packed viral genome. PNAS, 106: 8403-8404.
2008
Sun, S., Kondabagil, K., Draper, B., Alam, I.T., Baumann, V., Zhang, Z., Hegde, S., Fokine, A., Rossmann, M.G., and Rao, V.B. (2008). The atomic structure of bacteriophage T4 DNA packaging motor suggests a mechanism dependent on electrostatic forces. Cell 135:1251-1262. (This paper was featured as a Leading Edge “Preview” in the same issue, here.)
Rao, V.B., and Feiss, M. (2008). The bacteriophage DNA packaging motor. Ann. Rev. Genetics, 42:642-681.
2007
Fuller, D.N., Raymer, D.M., Kottadiel, V.I., Rao, V.B., and Smith, D.E. (2007). Single Phage T4 DNA packaging motors exhibit large force generation, high velocity, and dynamic variability. PNAS, 104:16868-16873.
Sun, S., Kondabagil, K., Gentz, P.M., Rossmann, M.G., and Rao, V.B. (2007). The Structure of the ATPase that Powers DNA Packaging into Bacteriophage T4 Procapsids. Mol. Cell. 25(6):943-949.
Li, Q., Shivachandra, S.B., Zhang, Z., and Rao, V.B. (2007). Assembly of the Small Outer Capsid protein, Soc, on bacteriophage T4: a novel system for high density display of multiple large anthrax toxins and foreign proteins on phage capsid. J. Mol. Biol. 370:1006-1019. (Cover Page)
Draper, B., and Rao, V.B. (2007). An ATP hydrolysis sensor in the DNA packaging motor from bacteriophage T4 suggests inchworm type translocation mechanism. J. Mol. Biol. 367:79-94.
2006
Kondabagil, K.R., Zhang, Z.B., and Rao, V.B. (2006). The DNA translocating ATPase of bacteriophage T4 packaging motor. J. Mol. Biol. 363:786-799.
Kondabagil, K.R., and Rao, V.B. (2006). A critical coiled coil motif in the small terminase, gp16, from bacteriophage T4: insights into DNA packaging initiation and assembly of packaging motor. J. Mol. Biol. 358:67-82.
Shivachandra, S.B., Rao, M., Janosi, L., Sathaliyawala, T., Matyas, G.R., Alving, C.R., Leppla, S.H., and Rao, V.B. (2006). In vitro binding of anthrax protective antigen on bacteriophage T4 capsid surface through Hoc-capsid interactions: a strategy for efficient display of large full-length proteins. Virology, 345:190-198.
Mitchell, M., and Rao, V.B. (2006). Functional analysis of the bacteriophage T4 DNA packaging ATPase motor. J. Biol. Chem. 281:518-527.
2005 and Earlier
Fokine, A., Chipman, P., Leiman, P., Mesyanzhimov, V., Rao, V., and Rossmann, M. (2004). Molecular architecture of the prolate head of bacteriophage T4. PNAS, 101:6003-6008.
Rentas, F., and Rao, V.B. (2003). Defining the Bacteriophage T4 DNA Packaging Machine: evidence for a C-terminal DNA cleavage domain in the large terminase/packaging protein gp17. J. Mol. Biol. 334:37-52.
Goetzinger, K., and Rao, V.B. (2003). Defining the ATPase center of bacteriophage T4 DNA packaging machine: requirement for a catalytic glutamate in the large terminase protein gp17. J. Mol. Biol. 331:139-154.
Mitchell, M., Matsuzaki, S., Imai, S., and Rao, V.B. (2002). Sequence analysis of bacteriophage T4 DNA-packaging/terminase genes 16 and 17 reveals a common ATPase center in the large subunit of viral terminases. Nucleic Acids Res. 30:4009-4021.
Rao, V.B., and Mitchell, M. (2001). The N-terminal ATPase site in the large Terminase Protein Gp17 is critically required for DNA packaging in bacteriophage T4. J. Mol. Biol. 314:411-421.
Leffers, G., and Rao, V.B. (2000). Biochemical Characterization of an ATPase Activity Associated with the Large Packaging Subunit Gp17 from Bacteriophage T4. J. Biol. Chem. 275:37127-37136.
Kuebler, D., and Rao, V.B. (1998). Functional Analysis of the DNA Packaging/Terminase Protein Gp17 from Bacteriophage T4. J. Mol. Biol. 281:803-814.
Jiang, J., Abu-Shilbayeh, L., and Rao, V.B. (1997). Display of a PorA Peptide from Neisseria meningitidis on the Bacteriophage T4 Capsid Surface. Infection and Immunity, 65:4770-4777.
Leffers, G., and Rao, V.B. (1996). A discontinuous headful packaging model for packaging less than headful length DNA molecules by bacteriophage T4. J. Mol. Biol. 258:839-850.
Rao, V.B., Thaker, V., and Black, L.W. (1992). A phage T4 in vitro packaging system for cloning long DNA molecules. Gene 113:25-33.
Rao, V.B., and Black, L.W. (1988). Cloning, overexpression and purification of the terminase proteins gp16 and gp17 of bacteriophage T4; Construction of a defined in vitro DNA packaging system using purified terminase proteins. J. Mol. Biol. 200:475-485.
Rao, V.B., and Black, L.W. (1985). Evidence that a phage T4 DNA packaging enzyme is a processed form of the major capsid gene product. Cell 42:967-977.
Rao, V.B., and Black, L.W. (1985). DNA packaging of bacteriophage T4 proheads in vitro: Evidence that prohead expansion is not coupled to DNA packaging.J. Mol. Biol. 185:565-578.